### metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# catena-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$ )(pyridine-3-carboxylato- $\kappa^2 O:O'$ )cadmium(II)]- $\mu$ -pyridine-3-carboxylato- $\kappa^3 N:O,O'$ ]

#### Hong-Chao Yi\* and Ping Mei

College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434103, People's Republic of China Correspondence e-mail: vi.hongchao@163.com

Received 30 May 2007; accepted 7 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.023; wR factor = 0.058; data-to-parameter ratio = 15.7.

The title complex,  $[Cd(C_6H_4NO_2)_2(C_{12}H_8N_2)]_n$ , is a onedimensional chain-like coordination polymer. Adjacent chains are further aggregated into a three-dimensional network through  $\pi-\pi$  (interplanar distance is 3.5806 Å) and  $C-H\cdots\pi$ interactions.

#### **Related literature**

For related literature, see: Chen *et al.* (2003); Gerrard & Wood (2000); Gutschke *et al.* (1995); Leininger *et al.* (2000); Li *et al.* (2006); Swiegers & Malefetse (2000); Yu *et al.* (2004).



#### **Experimental**

Crystal data  $[Cd(C_6H_4NO_2)_2(C_{12}H_8N_2)]$   $M_r = 536.81$ 

Triclinic,  $P\overline{1}$ a = 7.9274 (5) Å

| b = 10.8456 (7) A               |
|---------------------------------|
| c = 13.3381 (9)  Å              |
| $\alpha = 77.705 \ (1)^{\circ}$ |
| $\beta = 84.094 \ (1)^{\circ}$  |
| $\gamma = 69.984 \ (1)^{\circ}$ |
| V = 1052.23 (12) Å <sup>3</sup> |

#### Data collection

| Bruker SMART CCD area-detector         | 6811 measured reflections              |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 4681 independent reflections           |
| Absorption correction: multi-scan      | 4465 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2000)                 | $R_{\rm int} = 0.015$                  |
| $T_{\min} = 0.666, \ T_{\max} = 0.882$ |                                        |

#### Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.023 & 298 \text{ parameters} \\ wR(F^2)=0.058 & H\text{-atom parameters constrained} \\ S=1.07 & \Delta\rho_{\max}=0.54 \text{ e } \text{\AA}^{-3} \\ 4681 \text{ reflections} & \Delta\rho_{\min}=-0.51 \text{ e } \text{\AA}^{-3} \end{array}$ 

Z = 2

Mo  $K\alpha$  radiation

 $\mu = 1.08 \text{ mm}^-$ 

T = 293 (2) K0.41 × 0.26 × 0.12 mm

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N2/C7-C11 ring.

| $D - H \cdots A$                                  | D-H          | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------|--------------|-------------------------|-------------------------|--------------------------------------|
| $C5-H5\cdots Cg1^{i}$<br>$C17-H17\cdots Cg1^{ii}$ | 0.93<br>0.93 | 2.97<br>2.67            | 3.853 (2)<br>3.435 (2)  | 158<br>140                           |
| Symmetry codes: (i) -1                            | +2 - n + 1 - | $-7 \pm 1$ (ii) $-x$    | +2 -1 -7                |                                      |

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, -y, -z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2189).

#### References

- Bruker (1997). SMART (Version 5.611) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). *SADABS* (Version 2.03) and *SHELXTL* (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Chen, W., Yuan, H., Wang, J., Liu, Z., Xu, J., Yang, M. & Chen, J. (2003). J. Am. Chem. Soc. 125, 9266–9267.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gerrard, L. A. & Wood, P. T. (2000). Chem. Commun. pp. 2107-2108.
- Gutschke, S. O. H., Slawin, A. M. Z. & Wood, P. T. (1995). J. Chem. Soc. Chem. Commun. pp. 2197–2198.
- Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-908.
- Li, M., Xiang, J., Yuan, L., Wu, S., Chen, S. & Sun, J. (2006). Cryst. Growth Des.
- 6, 2036–2040.
  Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Swiegers, G. F. & Malefetse, T. J. (2000). Chem. Rev. 100, 3483-3538.
- Yu, Z. T., Liao, Z. L., Jiang, Y. S., Li, G. H., Li, G. D. & Chen, J. S. (2004). *Chem. Commun.* pp. 1814–1815.

Acta Cryst. (2007). E63, m1920 [doi:10.1107/S1600536807027936]

# *catena*-Poly[[(1,10-phenanthroline- $\kappa^2 N, N'$ )(pyridine-3-carboxylato- $\kappa^2 O: O'$ )cadmium(II)]- $\mu$ -pyrid-ine-3-carboxylato- $\kappa^3 N: O, O'$ ]

#### H.-C. Yi and P. Mei

#### Comment

Metal-organic coordination polymers have attracted considerable attention due to their intriguing potential applications, such as catalysis, magnetism, electronic and chemical separation (Leininger *et al.*, 2000; Swiegers *et al.*, 2000). Polydentate organic ligands are an important kind of ligands to construct coordination polymers. Many these hybrid materials have been synthesized and characterized by rational selection of suitable ligands. Among the various ligands, multidentate N– or O-donor ligands, such as pyridine- or imidazole-(di)carboxylic acids, have drawn extensive attention in the construction of coordination polymer. Pyridine-2,3-dicarboxylic acid is ralely used a linkage ligand (Gutschke *et al.*, 1995; Yu *et al.*, 2004). We present here the title new coordination polymer, (I), in which pyridine-2,3-dicarboxylic acid decarboxylates one carboxylic group and transforms to pyridine-3-carboxylic acid.

Compound (I) is a one-dimensional (one-dimensional) chain-like coordination polymer. The Cd<sup>II</sup> ion of (I) is seven-coordinated by two N atoms from 1,10-phenanthroline, one N atoms and four O atoms from three different pyridine-3-dicarboxylates (Fig. 1). There are two types of pyridine-3-dicarboxylates, one chelating Cd<sup>II</sup> with carboxylates, and the other acting as a bridge ligand with N atoms and carboxylates. The latter ligand link Cd<sup>II</sup> ions to form a one-dimensional chain along *a* axis. Two adjacent chains are linked together *via*  $\pi$ - $\pi$  interactions between the N3,C13,C14,C15,C16,C24 and N4,C22, C21,C20,C19,C23 rings of the 1,10-phenanthroline ligands with plane-to-plane distances of 3.542 and 3.565 Å and a slippage of 1.143 Å and 0.955 Å respectively. The dimeric chains further extend to three-dimensional (three-dimensional) supramolecular structure *via*  $\pi$ - $\pi$  interactions between pyridine rings with a distance of 3.555 Å and a slippage of 0.427 Å. The whole packing is further stabilized by weak C—H··· $\pi$  interactions (Table 1).

#### **Experimental**

A mixture of CdO (0.064 g, 0.05 mmol), 1,10-phenanthroline (0.0198 g, 0.1 mmol), pyridine-2,3-dicarboxylic acid (0.0167 g, 0.1 mmol) and 5.0 ml distilled water was mixed in a Teflon-lined autoclave and heated at 393 K for 3 days. After cooled to room temperature, block-like colorless crystals of (I) were obtained and washed with distlled water. The pyridine-3-dicarboxylic acid in (I) was believed to be obtained from *in situ* decarboxylation of pyridine-2,3-dicarboxylic acid. The similar decomposing behaviors have been observed previously (Gerrard, *et al.* 2000; Chen, *et al.* 2003; Li, *et al.* 2006)

#### Refinement

Hydrogen atoms bonded to C atoms were placed in idealized location, with C—H = 0.93 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ .

Figures



Fig. 1. The coordination environment of Cd in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms have been omitted for clarify.

*catena*-Poly[[(1,10-phenanthroline- $\kappa^2 N$ ,N')(pyridine-3-carboxylato- $\langle \kappa^2 O: O' \rangle$ cadmium(II)]- $\mu$ -pyridine-3-carboxylato- $\kappa^3 N: O, O'$ ]

| Crystal data                       |                                                  |
|------------------------------------|--------------------------------------------------|
| $[Cd(C_6H_4NO_2)_2(C_{12}H_8N_2)]$ | Z = 2                                            |
| $M_r = 536.81$                     | $F_{000} = 536$                                  |
| Triclinic, <i>P</i> T              | $D_{\rm x} = 1.694 {\rm ~Mg~m}^{-3}$             |
| Hall symbol: -P 1                  | Mo K $\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| a = 7.9274 (5) Å                   | Cell parameters from 5362 reflections            |
| b = 10.8456 (7) Å                  | $\theta = 2.3 - 29.5^{\circ}$                    |
| c = 13.3381 (9)  Å                 | $\mu = 1.08 \text{ mm}^{-1}$                     |
| $\alpha = 77.705 \ (1)^{\circ}$    | T = 293 (2) K                                    |
| $\beta = 84.094 \ (1)^{\circ}$     | Block, colourless                                |
| $\gamma = 69.984 \ (1)^{\circ}$    | $0.41 \times 0.26 \times 0.12 \text{ mm}$        |
| $V = 1052.23 (12) \text{ Å}^3$     |                                                  |

#### Data collection

| Bruker SMART CCD area-detector diffractometer               | 4681 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 4465 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.015$                  |
| T = 293(2)  K                                               | $\theta_{\text{max}} = 27.5^{\circ}$   |
| $\phi$ and $\omega$ scans                                   | $\theta_{\min} = 2.3^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2000) | $h = -9 \rightarrow 10$                |
| $T_{\min} = 0.666, T_{\max} = 0.882$                        | $k = -11 \rightarrow 14$               |
| 6811 measured reflections                                   | $l = -17 \rightarrow 16$               |

#### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map     |
|---------------------------------|----------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites |
| $R[F^2 > 2\sigma(F^2)] = 0.023$ | H-atom parameters constrained                            |

| $wR(F^2) = 0.058$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0261P)^2 + 0.3996P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| <i>S</i> = 1.07                                                | $(\Delta/\sigma)_{\text{max}} = 0.001$                                              |
| 4681 reflections                                               | $\Delta \rho_{max} = 0.54 \text{ e} \text{ Å}^{-3}$                                 |
| 298 parameters                                                 | $\Delta \rho_{min} = -0.51 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                         |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| F 1             |        | 1.          | 1 .       | • ,    |         |               |           | . 1.   | 1 .       | ,          | 182      | ζ. |
|-----------------|--------|-------------|-----------|--------|---------|---------------|-----------|--------|-----------|------------|----------|----|
| Fractional      | atomic | coordinates | and i     | sotron | IC OF P | auivalent     | ' isotron | 1C d1S | nlacement | narameters | $IA^{-}$ | 1  |
| 1 / 00011011011 | aronne | coordinates | control t | sonop  |         | 9000000000000 | isonop    | ie ans | pracement | parameters | 1.1      | /  |

|     | x             | У             | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|---------------|---------------|---------------|---------------------------|
| Cd1 | 0.781715 (17) | 0.224799 (13) | 0.236286 (10) | 0.03447 (5)               |
| C1  | 0.9019 (3)    | 0.6148 (2)    | 0.33832 (19)  | 0.0525 (5)                |
| H1  | 0.9584        | 0.6033        | 0.2747        | 0.063*                    |
| C2  | 0.8012 (3)    | 0.5342 (2)    | 0.38131 (17)  | 0.0437 (5)                |
| C3  | 0.7195 (3)    | 0.5516 (2)    | 0.4763 (2)    | 0.0545 (6)                |
| Н3  | 0.6496        | 0.5000        | 0.5084        | 0.065*                    |
| C4  | 0.7429 (4)    | 0.6465 (2)    | 0.5229 (2)    | 0.0586 (6)                |
| H4  | 0.6900        | 0.6598        | 0.5870        | 0.070*                    |
| C5  | 0.8461 (4)    | 0.7207 (2)    | 0.4721 (2)    | 0.0575 (6)                |
| Н5  | 0.8617        | 0.7842        | 0.5040        | 0.069*                    |
| C6  | 0.7872 (3)    | 0.4299 (2)    | 0.3280 (2)    | 0.0529 (6)                |
| C7  | 1.1925 (2)    | 0.14076 (18)  | 0.29063 (14)  | 0.0320 (4)                |
| H7  | 1.1776        | 0.2225        | 0.2467        | 0.038*                    |
| C8  | 1.3578 (2)    | 0.07150 (18)  | 0.33359 (13)  | 0.0301 (3)                |
| C9  | 1.3781 (3)    | -0.0484 (2)   | 0.40090 (15)  | 0.0375 (4)                |
| Н9  | 1.4867        | -0.0961       | 0.4326        | 0.045*                    |
| C10 | 1.2348 (3)    | -0.0964 (2)   | 0.42046 (16)  | 0.0436 (5)                |
| H10 | 1.2457        | -0.1772       | 0.4649        | 0.052*                    |
| C11 | 1.0757 (3)    | -0.0219 (2)   | 0.37277 (16)  | 0.0405 (4)                |
| H11 | 0.9800        | -0.0548       | 0.3853        | 0.049*                    |
| C12 | 1.5107 (2)    | 0.12578 (19)  | 0.30540 (14)  | 0.0325 (4)                |
| C13 | 0.8300 (3)    | -0.0623 (2)   | 0.14946 (18)  | 0.0495 (5)                |
| H13 | 0.8667        | -0.1050       | 0.2156        | 0.059*                    |
| C14 | 0.7972 (4)    | -0.1364 (2)   | 0.0844 (2)    | 0.0606 (6)                |
| H14 | 0.8126        | -0.2267       | 0.1069        | 0.073*                    |
|     |               |               |               |                           |

| C15 | 0.7424 (4)   | -0.0746 (3)  | -0.0124 (2)   | 0.0620 (7) |
|-----|--------------|--------------|---------------|------------|
| H15 | 0.7183       | -0.1222      | -0.0562       | 0.074*     |
| C16 | 0.7224 (3)   | 0.0611 (2)   | -0.04569 (17) | 0.0502 (5) |
| C17 | 0.6681 (4)   | 0.1327 (3)   | -0.14689 (19) | 0.0654 (7) |
| H17 | 0.6410       | 0.0888       | -0.1926       | 0.078*     |
| C18 | 0.6558 (4)   | 0.2608 (3)   | -0.17691 (19) | 0.0661 (7) |
| H18 | 0.6224       | 0.3042       | -0.2435       | 0.079*     |
| C19 | 0.6929 (3)   | 0.3319 (2)   | -0.10875 (17) | 0.0504 (5) |
| C20 | 0.6834 (4)   | 0.4663 (3)   | -0.13723 (19) | 0.0624 (7) |
| H20 | 0.6527       | 0.5127       | -0.2035       | 0.075*     |
| C21 | 0.7189 (4)   | 0.5282 (3)   | -0.0683 (2)   | 0.0657 (7) |
| H21 | 0.7138       | 0.6171       | -0.0868       | 0.079*     |
| C22 | 0.7633 (4)   | 0.4577 (2)   | 0.03071 (19)  | 0.0557 (6) |
| H22 | 0.7872       | 0.5016       | 0.0775        | 0.067*     |
| C23 | 0.7411 (3)   | 0.2671 (2)   | -0.00733 (15) | 0.0402 (4) |
| C24 | 0.7590 (3)   | 0.1274 (2)   | 0.02443 (15)  | 0.0386 (4) |
| N1  | 0.9242 (3)   | 0.7081 (2)   | 0.38144 (18)  | 0.0617 (5) |
| N2  | 1.0527 (2)   | 0.09557 (16) | 0.30935 (12)  | 0.0352 (3) |
| N3  | 0.8111 (2)   | 0.06612 (17) | 0.12083 (13)  | 0.0399 (4) |
| N4  | 0.7732 (2)   | 0.33079 (17) | 0.06161 (13)  | 0.0421 (4) |
| 01  | 0.8802 (3)   | 0.41230 (19) | 0.24723 (15)  | 0.0697 (5) |
| O2  | 0.6869 (3)   | 0.3643 (2)   | 0.36485 (19)  | 0.0807 (6) |
| O3  | 1.48444 (19) | 0.22957 (14) | 0.23695 (12)  | 0.0451 (3) |
| O4  | 1.65543 (18) | 0.06529 (15) | 0.34869 (11)  | 0.0428 (3) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cd1 | 0.02902 (8) | 0.03845 (8) | 0.03973 (8) | -0.01887 (6) | -0.00330 (5) | -0.00146 (6) |
| C1  | 0.0635 (15) | 0.0442 (12) | 0.0508 (12) | -0.0217 (11) | 0.0034 (11)  | -0.0072 (10) |
| C2  | 0.0437 (11) | 0.0358 (10) | 0.0508 (12) | -0.0111 (8)  | -0.0074 (9)  | -0.0068 (8)  |
| C3  | 0.0559 (14) | 0.0493 (13) | 0.0618 (14) | -0.0248 (11) | 0.0070 (11)  | -0.0099 (11) |
| C4  | 0.0729 (17) | 0.0507 (13) | 0.0503 (13) | -0.0173 (12) | 0.0040 (12)  | -0.0136 (10) |
| C5  | 0.0745 (17) | 0.0449 (12) | 0.0598 (14) | -0.0249 (12) | -0.0057 (12) | -0.0138 (11) |
| C6  | 0.0565 (14) | 0.0403 (11) | 0.0625 (15) | -0.0108 (10) | -0.0163 (11) | -0.0123 (10) |
| C7  | 0.0301 (9)  | 0.0342 (9)  | 0.0356 (9)  | -0.0167 (7)  | -0.0027 (7)  | -0.0040 (7)  |
| C8  | 0.0293 (8)  | 0.0353 (9)  | 0.0312 (8)  | -0.0168 (7)  | -0.0009 (6)  | -0.0075 (7)  |
| С9  | 0.0331 (9)  | 0.0426 (10) | 0.0382 (10) | -0.0167 (8)  | -0.0077 (7)  | -0.0002 (8)  |
| C10 | 0.0447 (11) | 0.0433 (11) | 0.0445 (11) | -0.0241 (9)  | -0.0063 (9)  | 0.0063 (8)   |
| C11 | 0.0372 (10) | 0.0461 (11) | 0.0456 (10) | -0.0274 (8)  | -0.0018 (8)  | -0.0013 (8)  |
| C12 | 0.0278 (9)  | 0.0387 (9)  | 0.0367 (9)  | -0.0169 (7)  | 0.0009 (7)   | -0.0101 (7)  |
| C13 | 0.0540 (13) | 0.0434 (11) | 0.0502 (12) | -0.0182 (10) | 0.0008 (10)  | -0.0041 (9)  |
| C14 | 0.0740 (18) | 0.0438 (13) | 0.0674 (16) | -0.0235 (12) | 0.0069 (13)  | -0.0150 (11) |
| C15 | 0.0754 (18) | 0.0584 (15) | 0.0611 (15) | -0.0255 (13) | 0.0054 (13)  | -0.0279 (12) |
| C16 | 0.0516 (13) | 0.0528 (13) | 0.0458 (12) | -0.0133 (10) | 0.0012 (10)  | -0.0162 (10) |
| C17 | 0.0823 (19) | 0.0722 (17) | 0.0438 (13) | -0.0195 (14) | -0.0072 (12) | -0.0231 (12) |
| C18 | 0.0807 (19) | 0.0696 (17) | 0.0377 (12) | -0.0101 (14) | -0.0088 (12) | -0.0091 (11) |
| C19 | 0.0505 (13) | 0.0528 (13) | 0.0382 (11) | -0.0085 (10) | 0.0008 (9)   | -0.0031 (9)  |

| C20 | 0.0718 (17) | 0.0540 (14) | 0.0444 (13) | -0.0104 (12) | -0.0014 (11) | 0.0088 (11)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C21 | 0.084 (2)   | 0.0484 (14) | 0.0593 (15) | -0.0265 (13) | -0.0030 (14) | 0.0088 (11)  |
| C22 | 0.0693 (16) | 0.0461 (12) | 0.0543 (13) | -0.0284 (11) | -0.0051 (11) | 0.0021 (10)  |
| C23 | 0.0346 (10) | 0.0445 (11) | 0.0379 (10) | -0.0116 (8)  | 0.0028 (8)   | -0.0042 (8)  |
| C24 | 0.0331 (10) | 0.0432 (10) | 0.0381 (10) | -0.0110 (8)  | 0.0036 (7)   | -0.0096 (8)  |
| N1  | 0.0790 (15) | 0.0489 (11) | 0.0667 (13) | -0.0343 (11) | 0.0047 (11)  | -0.0123 (10) |
| N2  | 0.0296 (8)  | 0.0399 (8)  | 0.0410 (8)  | -0.0190 (6)  | -0.0035 (6)  | -0.0045 (7)  |
| N3  | 0.0392 (9)  | 0.0405 (9)  | 0.0397 (9)  | -0.0149 (7)  | -0.0012 (7)  | -0.0045 (7)  |
| N4  | 0.0452 (10) | 0.0415 (9)  | 0.0411 (9)  | -0.0204 (7)  | -0.0015 (7)  | -0.0007 (7)  |
| 01  | 0.0977 (15) | 0.0558 (11) | 0.0590 (11) | -0.0246 (10) | -0.0054 (10) | -0.0177 (9)  |
| O2  | 0.0774 (14) | 0.0730 (13) | 0.1171 (18) | -0.0472 (11) | 0.0106 (12)  | -0.0407 (12) |
| O3  | 0.0340 (7)  | 0.0420 (8)  | 0.0600 (9)  | -0.0213 (6)  | -0.0038 (6)  | 0.0048 (7)   |
| O4  | 0.0297 (7)  | 0.0552 (9)  | 0.0463 (8)  | -0.0215 (6)  | -0.0070 (6)  | -0.0004 (6)  |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Cd1—N2               | 2.3059 (16) | C11—H11               | 0.9300      |
|----------------------|-------------|-----------------------|-------------|
| Cd1—O3 <sup>i</sup>  | 2.3385 (14) | C12—O4                | 1.241 (2)   |
| Cd1—N4               | 2.3649 (17) | C12—O3                | 1.259 (2)   |
| Cd1—O2               | 2.420 (2)   | C12—Cd1 <sup>ii</sup> | 2.7149 (18) |
| Cd1—O1               | 2.450 (2)   | C13—N3                | 1.323 (3)   |
| Cd1—O4 <sup>i</sup>  | 2.4526 (14) | C13—C14               | 1.398 (3)   |
| Cd1—N3               | 2.4836 (17) | С13—Н13               | 0.9300      |
| Cd1—C12 <sup>i</sup> | 2.7149 (18) | C14—C15               | 1.360 (4)   |
| C1—N1                | 1.333 (3)   | C14—H14               | 0.9300      |
| C1—C2                | 1.379 (3)   | C15—C16               | 1.402 (4)   |
| C1—H1                | 0.9300      | C15—H15               | 0.9300      |
| C2—C3                | 1.382 (3)   | C16—C24               | 1.401 (3)   |
| C2—C6                | 1.497 (3)   | C16—C17               | 1.433 (3)   |
| C3—C4                | 1.381 (4)   | C17—C18               | 1.334 (4)   |
| С3—Н3                | 0.9300      | C17—H17               | 0.9300      |
| C4—C5                | 1.371 (4)   | C18—C19               | 1.420 (4)   |
| C4—H4                | 0.9300      | C18—H18               | 0.9300      |
| C5—N1                | 1.313 (3)   | C19—C20               | 1.404 (4)   |
| С5—Н5                | 0.9300      | C19—C23               | 1.410 (3)   |
| C6—O2                | 1.240 (3)   | C20—C21               | 1.350 (4)   |
| C6—O1                | 1.252 (3)   | C20—H20               | 0.9300      |
| C7—N2                | 1.339 (2)   | C21—C22               | 1.390 (3)   |
| С7—С8                | 1.381 (2)   | C21—H21               | 0.9300      |
| С7—Н7                | 0.9300      | C22—N4                | 1.327 (3)   |
| C8—C9                | 1.383 (3)   | C22—H22               | 0.9300      |
| C8—C12               | 1.502 (2)   | C23—N4                | 1.351 (3)   |
| C9—C10               | 1.384 (3)   | C23—C24               | 1.444 (3)   |
| С9—Н9                | 0.9300      | C24—N3                | 1.350 (3)   |
| C10—C11              | 1.377 (3)   | O3—Cd1 <sup>ii</sup>  | 2.3385 (14) |
| С10—Н10              | 0.9300      | O4—Cd1 <sup>ii</sup>  | 2.4526 (14) |
| C11—N2               | 1.336 (3)   |                       |             |

| N2—Cd1—O3 <sup>i</sup>         | 140.89 (5) | N2—C11—H11                 | 118.5                  |
|--------------------------------|------------|----------------------------|------------------------|
| N2—Cd1—N4                      | 120.13 (6) | C10—C11—H11                | 118.5                  |
| O3 <sup>i</sup> —Cd1—N4        | 91.96 (6)  | O4—C12—O3                  | 123.82 (17)            |
| N2—Cd1—O2                      | 94.99 (7)  | O4—C12—C8                  | 118.82 (17)            |
| O3 <sup>i</sup> —Cd1—O2        | 87.60 (6)  | O3—C12—C8                  | 117.34 (16)            |
| N4—Cd1—O2                      | 118.14 (7) | O4—C12—Cd1 <sup>ii</sup>   | 64.55 (10)             |
| N2—Cd1—O1                      | 84.12 (6)  | $O3-C12-Cd1^{ii}$          | 59.33 (9)              |
| $03^{i}$ Cd1 01                | 126 26 (6) | $C_{8}$ $C_{12}$ $C_{41}$  | 174 77 (13)            |
| N4-Cd1-O1                      | 79 62 (6)  | N3-C13-C14                 | 171.77(13)<br>122.7(2) |
| O2-Cd1-O1                      | 53.38 (7)  | N3-C13-H13                 | 118.6                  |
| $N^2$ —Cd1—Q4 <sup>i</sup>     | 86.27 (5)  | C14—C13—H13                | 118.6                  |
| $O3^{i}$ —Cd1—O4 <sup>i</sup>  | 54.76 (5)  | C15—C14—C13                | 119.1 (2)              |
| N4—Cd1—Q4 <sup>i</sup>         | 138.04 (5) | C15—C14—H14                | 120.5                  |
| $\Omega^2$ —Cd1— $\Omega^4^i$  | 88.14 (6)  | C13—C14—H14                | 120.5                  |
| $O_1  Cd_1  O_1^{i}$           | 139.06 (6) | C14-C15-C16                | 119.8 (2)              |
| $N_{-Cd1}$                     | 91.80 (6)  | C14-C15-H15                | 120.1                  |
| $\Omega^{2^{i}}$ Cd1 N2        | 79 14 (6)  | C16-C15-H15                | 120.1                  |
| $N_4 - Cd_1 - N_3$             | 68 45 (6)  | $C_{10} = C_{10} = C_{10}$ | 120.1<br>117.3(2)      |
| $\Omega_{-Cd1-N3}$             | 165 57 (6) | $C_{24} - C_{16} - C_{17}$ | 117.5(2)<br>119.6(2)   |
| O1 - Cd1 - N3                  | 140 29 (6) | $C_{15}$ $C_{16}$ $C_{17}$ | 1231(2)                |
| $OA^{i}$ $Cd1$ $N3$            | 79 60 (5)  | C18-C17-C16                | 121 4 (2)              |
| N2 $C_{41}$ $C_{12}^{i}$       | 113 35 (6) | C18-C17-H17                | 119.3                  |
|                                | 27.50 (5)  |                            | 110.2                  |
| 03                             | 27.39 (3)  |                            | 119.5                  |
| N4—Cd1—C12 <sup>1</sup>        | 115.76(6)  | 017-018-019                | 121.0 (2)              |
| $O2-Cd1-C12^{1}$               | 88.34 (6)  | C17—C18—H18                | 119.5                  |
| $O1$ — $Cd1$ — $C12^i$         | 140.09 (6) | C19—C18—H18                | 119.5                  |
| $O4^{i}$ —Cd1—C12 <sup>i</sup> | 27.19 (5)  | C20—C19—C23                | 117.3 (2)              |
| N3—Cd1—C12 <sup>i</sup>        | 77.27 (5)  | C20—C19—C18                | 123.0 (2)              |
| N1—C1—C2                       | 124.7 (2)  | C23—C19—C18                | 119.7 (2)              |
| N1—C1—H1                       | 117.7      | C21—C20—C19                | 119.9 (2)              |
| C2—C1—H1                       | 117.7      | C21—C20—H20                | 120.0                  |
| C1—C2—C3                       | 117.0 (2)  | С19—С20—Н20                | 120.0                  |
| C1—C2—C6                       | 120.8 (2)  | C20—C21—C22                | 119.2 (2)              |
| C3—C2—C6                       | 122.1 (2)  | C20—C21—H21                | 120.4                  |
| C4—C3—C2                       | 119.2 (2)  | C22—C21—H21                | 120.4                  |
| С4—С3—Н3                       | 120.4      | N4—C22—C21                 | 123.2 (2)              |
| С2—С3—Н3                       | 120.4      | N4—C22—H22                 | 118.4                  |
| C5—C4—C3                       | 118.2 (2)  | C21—C22—H22                | 118.4                  |
| C5—C4—H4                       | 120.9      | N4—C23—C19                 | 122.3 (2)              |
| C3—C4—H4                       | 120.9      | N4—C23—C24                 | 118.41 (18)            |
| N1—C5—C4                       | 124.3 (2)  | C19—C23—C24                | 119.3 (2)              |
| N1—C5—H5                       | 117.8      | N3—C24—C16                 | 122.73 (19)            |
| С4—С5—Н5                       | 117.8      | N3—C24—C23                 | 118.36 (18)            |
| O2—C6—O1                       | 122.7 (2)  | C16—C24—C23                | 118.91 (19)            |
| O2—C6—C2                       | 119.7 (2)  | C5—N1—C1                   | 116.5 (2)              |

| O1—C6—C2                                         | 117.6 (2)                 | C11—N2—C7                | 117.95 (16) |
|--------------------------------------------------|---------------------------|--------------------------|-------------|
| N2—C7—C8                                         | 123.01 (17)               | C11—N2—Cd1               | 122.72 (12) |
| N2—C7—H7                                         | 118.5                     | C7—N2—Cd1                | 119.30 (12) |
| С8—С7—Н7                                         | 118.5                     | C13—N3—C24               | 118.38 (19) |
| С7—С8—С9                                         | 118.31 (16)               | C13—N3—Cd1               | 126.33 (15) |
| C7—C8—C12                                        | 119.94 (16)               | C24—N3—Cd1               | 113.25 (13) |
| C9—C8—C12                                        | 121.74 (16)               | C22—N4—C23               | 118.06 (19) |
| C8—C9—C10                                        | 119.18 (18)               | C22—N4—Cd1               | 123.29 (16) |
| С8—С9—Н9                                         | 120.4                     | C23—N4—Cd1               | 117.31 (13) |
| С10—С9—Н9                                        | 120.4                     | C6—O1—Cd1                | 91.02 (16)  |
| C11—C10—C9                                       | 118.61 (18)               | C6—O2—Cd1                | 92.73 (17)  |
| С11—С10—Н10                                      | 120.7                     | C12—O3—Cd1 <sup>ii</sup> | 93.08 (11)  |
| С9—С10—Н10                                       | 120.7                     | C12—O4—Cd1 <sup>ii</sup> | 88.26 (11)  |
| N2-C11-C10                                       | 122.92 (17)               |                          |             |
| Symmetry codes: (i) $x-1$ , $y$ , $z$ ; (ii) $x$ | +1, <i>y</i> , <i>z</i> . |                          |             |

### Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                  | <i>D</i> —Н               | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|------------------------------------------------------------------------------------------|---------------------------|--------------|--------------|------------|
| C5—H5···Cg1 <sup>iii</sup>                                                               | 0.93                      | 2.97         | 3.853 (2)    | 158        |
| C17—H17···Cg1 <sup>iv</sup>                                                              | 0.93                      | 2.67         | 3.435 (2)    | 140        |
| Symmetry codes: (iii) - <i>x</i> +2, - <i>y</i> +1, - <i>z</i> +1; (iv) - <i>x</i> +2, - | - <i>y</i> , - <i>z</i> . |              |              |            |

Fig. 1

